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Abstract

In this paper, we qualitatively and quantitatively discuss the
design choices, production experience, and lessons in building
the Elastic Block Storage (EBS) at ALIBABA CLOUD over the
past decade. To cope with hardware advancement and users’
demands, we shift our focus from design simplicity in EBS1
to high performance and space efficiency in EBS2, and finally
reducing network traffic amplification in EBS3.

In addition to the architectural evolutions, we also sum-
marize development lessons and experiences as four topics,
including: (i) achieving high elasticity in latency, throughput,
IOPS and capacity; (ii) improving availability by minimiz-
ing the blast radius of individual, regional, and global failure
events; (iii) identifying the motivations and key tradeoffs in
various hardware offloading solutions; and (iv) identifying
the pros/cons of alternative solutions and explaining why
seemingly promising ideas would not work in practice.

1 Introduction

Elastic Block Storage (EBS) service is a cornerstone in today’s
cloud [16, 18, 19]. In EBS, the storage service is in the form
of virtual block devices with high performance, availability,
and elasticity. The most outstanding characteristic of EBS
architecture is the compute-to-storage disaggregation where
the virtual machines (compute end) and disks (storage end)
are not physically co-located but interconnected via datacenter
networks.

In this paper, we start by revisiting the evolutions behind
the three generations of EBS at ALIBABA CLOUD [16]. EBS1
marks our initial step in adopting the compute-to-storage
philosophy. In EBS1, there are two notable design choices:
in-place update from virtual disks (VDs) to physical disks,
and the exclusive management of virtual disks. First, EBS1
directly maps a VD inside the virtual machine (VM) as a
series of 64 MiB Ext4 files in the backend storage server.
Moreover, EBS1 employs a fleet of stateless BlockServers
to manage VDs where each VD is exclusively handled by a
BlockServer. While EBS1 had been successfully deployed
on more than 300 HDD-backed clusters, its limitations also
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unfolded. The straightforward virtualization led to severe
space amplification and performance bottlenecks.

We then developed EBS2 with two significant changes: the
log-structured design, and VD segmentation. First, we em-
ployed the Pangu [35] distributed file system as our storage
backend, and redesigned the BlockServers to convert VDs’ all
writes to sequential appends. By switching to a log-structured
layout, EBS2 still used three-way replication for incoming
writes but could transparently perform data compression and
erasure coding (EC) in the background during garbage col-
lection (GC). Moreover, EBS2 split VDs into finer segments
(32 GiB each), thus shifting the mapping between VDs and
BlockServers from VD level to Segment level. With the above
two changes, EBS2 was able to reduce the space efficiency
from 3 (i.e., three-way replication) in EBS1 to 1.29 on average
in the field. Moreover, supercharged with SSDs, an EBS2-
backed VD can achieve up to 1M IOPS and 4,000 MiB/s
throughput with 100 us-level latency on average. Unfortu-
nately, EBS2 also faced a significant challenge. That is, the
traffic amplification factor increased to 4.69, namely 3 (fore-
ground replication write) plus 1 (background GC read) and
0.69 (background EC/compression write).

Hence, we built EBS3 to reduce traffic amplification using
online (i.e., foreground) EC/compression via two techniques:
Fusion Write Engine (FWE), and FPGA-based hardware com-
pression. FWE aggregates write requests from different seg-
ments (if necessary) to meet the size requirement of EC and
compression. Moreover, EBS3 offloads the compute-intensive
compression to a customized FPGA for acceleration. As a
result, EBS3 can reduce the storage amplification factor from
1.29 to 0.77 (after compression) and the traffic amplification
factor from 4.69 to 1.59 while still maintaining performance
similar to EBS2. Since release, EBS3 has been deployed on
more than 100 clusters, serving over S00K VDs.

Figure 1 outlines the chronological progression of Alibaba
EBS since 2012. We highlight the time of major releases (i.e.,
EBS1 to EBS3), the integration of key techniques (e.g., Luna,
our user-space TCP stack [46]) and the adoption of advanced
hardware (e.g., Persistent Memory in EBSX). The evolution of
EBS demonstrates a shift in focus from performance to space
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Figure 1: Alibaba EBS Timeline

and traffic efficiency. Nevertheless, simply altering the high-
level architecture is not enough. Next, we further discuss our
lessons in building a high-performance and robust EBS from
four perspectives, including elasticity, availability, hardware
offloading, and alternative solutions.

One representative feature of a cloud block store is
elasticity—providing VDs with varying performance and ca-
pacity levels. There are two key aspects: identifying bound-
aries and achieving fine-grained tuning. First, we discover
that the average and tail latency are dominated by different
factors—hardware overhead and software processing, respec-
tively. Thus, we build corresponding solutions including
EBSX, a one-hop architecture backed by persistent memory for
minimizing average latency, and the use of dedicated threads
for I/O to alleviate tail latency. Furthermore, we realize that
throughput and IOPS are bounded by similar mechanisms. In
the frontend BlockClient, we optimize the stack by moving
the processing from kernel to user-space and then to hardware
offloading in FPGA. In the backend BlockServer, we utilize
high parallelism to achieve efficient throughput/IOPS control.
As for space elasticity, EBS not only provides wide ranges of
storage space (i.e., from 1 GiB to 64 TiB) but also supports
features including flexible resizing and fast cloning.

We then move on to discuss threats to the availability of
EBS, especially under large-scale deployment. We begin by
categorizing three levels of failure events, including individ-
ual, regional, and global, that can lead to one, several, or
all VDs in a cluster (temporarily) ceasing service. With VD
segmentation and segment migration since EBS2, field diag-
nosis indicates that regional events become more frequent
and an individual event can now easily cascade into regional
or even global ones. Therefore, on the control plane, we de-
veloped a Federated BlockManager to organize the VDs into
mini groups and use CentralManager for coordination. Addi-
tionally, on the data plane, we have built the logical failure
domain to limit the destinations of segment migration.

In the third topic, we highlight the importance of offload-
ing key control/data paths to hardware for acceleration. We
use the offloading evolutions of both BlockClient and Block-
Server as examples to discuss the tradeoffs between different
options. Specifically, BlockClient started with FPGA offload-
ing to accelerate storage/network virtualization. However,
impacted by FPGA instability under large deployment (e.g.,
22% of downtime caused by FPGA-related issues), our Block-
Client dropped the FPGA-based approach and adopted the
ASIC-based solution. Conversely, BlockServer, which also

initially chose FPGA for speeding up EC/compression, opted
for the many-core ARM CPU as the next stop due to the
flexibility and cost requirement.

The final topic is organized as a series of “What If?” ques-
tions (§6). Through three Q&A, we explain why seemingly
promising ideas, such as extending EBS1 with segmentation
but without a log-structured design, eventually failed, and
discuss the possibilities of alternative solutions (e.g., building
EBS with open-source software). We end this paper with a
short discussion of related work and a conclusion.

2 Architecture Evolution: A Shift of Focus
2.1 EBS1: An Initial Foray

EBS1 marked our first step into offering an elastic block store
based on a disaggregated architecture. By placing the com-
pute and storage in different clusters and connecting them
via the datacenter network, this design offers flexibility in
deployment, scaling, and evolution. Such philosophy has
been widely adopted by many vendors, such as Microsoft
Azure [25] and Google datacenters [30].

Compute end. Figure 2 provides a high-level overview of
EBS1. A compute cluster comprises multiple servers where
each server runs one BlockClient and can host several VMs.
In addition, a VM can mount one or more VDs. Users can
access the VD as a normal block device and the host server
forwards the I/O requests to the storage clusters via the Block-
Client.

Compute Cluster Storage Cluster

Compute Server BlockM ChunkM
(Paxos) (Paxos)
[V 70 = BiockServer 70 | VD 0k )
ient NN ©) ChunkServer
- BlockServer
VD, |
ChunkServer

BlockServer

Figure 2: The system architecture of EBS1 (§2.1). VD:Virtual Disk.
VM: Virtual Machine. BlockManagers and ChunkManagers all run
three-instance Paxos groups. Each VM can host multiple VDs.

ChunkServer

Chunk #0

Storage end. EBS1 used a different fleet of dedicated servers
for storage. First, we build the BlockManager (a set of three
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nodes backed by Paxos) and a group of BlockServers. The
BlockManager maintains VDs’ metadata, such as the capacity
and snapshot versions. The BlockServers handle I/O requests
of multiple VDs assigned by the BlockManager. Note that the
BlockManager can reassign a VD to another BlockServer dur-
ing failover. Second, we further introduce a data abstraction,
called chunk. The Logical Block Address (LBA) space of a
user’s VD is divided into a series of 64 MiB chunks. Similarly,
the ChunkManager (a set of three nodes backed by Paxos)
manages the chunks’ metadata. The ChunkServer stores a
64 MiB chunk as a 64 MiB Ext4 file (called DataFile) and per-
forms in-place updates to the chunk for write requests. Each
chunk is three-way replicated on three different ChunkServers.
For efficiency, we use thin provisioning—allocating space
only when the user writes data to the VD.

Network. There are mainly two sets of network in EBS1. The
frontend network connects the compute and storage clusters.
The backend network inside the storage clusters connects the
BlockServers to the ChunkServers. Both use Clos topology
and rely on the 10 Gbps network with the kernel TCP/IP stack.

Data-flow. When a VM issues a new write request to its VD,
BlockClient first contacts the BlockManager to locate the
corresponding BlockServer for this request () in Figure 2).
Then, the BlockClient forwards the write request to the Block-
Server ((@). The BlockServer further asks the ChunkManager
to determine the three ChunkServers (3) and persists the
data accordingly (@). In practice, the BlockClient caches
the VD-to-BlockServer mappings, and BlockServers cache
chunk-to-ChunkServer mappings (i.e. skipping (D and 3)).

Limitations. EBS1, released in 2012, has served over 1
million VDs and stored hundreds of PBs of data across
hundreds of deployed clusters. Its straightforward and ma-
ture designs (e.g., in-place update and N-to-1 mapping be-
tween VDs and BlockServers)—while expediting develop-
ment and deployment—Ilimit the performance and efficiency.
For example, to reduce the space overhead, we wish to
use data compression and EC. However, compression non-
deterministically alters the size of data which breaks the direct
mapping of in-place updates. In addition, EC has a minimum
size requirement (e.g., when the stripe unit is 4 KiB, EC(4,2)
requires at least 16 KiB) and thus can result in significant
write amplification, especially for small I/O requests. Another
limitation is that, under the N-to-1 mapping, the performance
of a VD is ultimately bounded by the performance of the
corresponding BlockServer which can suffer from hotspot
issues under burst workloads. In addition, with HDD and
traditional kernel TCP/IP stack, we find it difficult to quantify
and guarantee SLOs to users.

2.2 EBS2: Speedup with Space Efficiency

Overview. Figure 3 presents the high-level architecture of
EBS2. The most significant change is that EBS2 no longer
directly handles the data persistence or manages the con-

sensus protocol. Instead, it builds on top of a distributed
storage system—named Pangu [35]—which provides append-
only file semantics and distributed lock services (based on a
customized Raft protocol). The BlockServers employ a log-
structured design [38] and translate the VDs’ write requests
into Pangu append-only writes, thus enabling efficient data
compression and EC during background garbage collection.
We also split the VD address space into fixed-size segments,
allowing one VD to be served by multiple BlockServers. Also,
with segmentation, failover is no longer at the granularity of
the whole VD but a segment—BlockManager migrates the
impacted segment to another BlockServer. In addition, the
BlockManager directly uses Pangu distributed lock service
instead of Paxos for leader election.

As a result, we modified the I/O procedures as follows.
After receiving a VD’s request, BlockClient first retrieves
the segment’s address from BlockManager ((D in Figure 3,
which can be skipped by caching), and then forwards the I/O
requests to the target BlockServer (). BlockServer employs
the Log-Structured Block Device (LSBD) Core to convert I/O
requests into Pangu APIs and then calls an embedded Pangu
client for persisting or fetching data (3)). Note that, since
EBS2, a BlockServer and a Pangu’s ChunkServer, while co-
located on the same physical server, are logically independent
processes and rely on backend network for transferring data
(i.e., not enforcing locality).

Compute Server
D || vD I ..
|segment #0[segment #1| " [ | |
[ BlockClient f———
Compute Cluster
Storage Cluster v V Monitor/

(Block Layer) | BlockServer BlockServer | Manage

GC Snapshot [ " GC Snapshot

Worker Worker Worker | Worker
LSBD Core LSBD Core

FieLayay " @ reerapiicaswiing @ """ """
Pangu Distributed File System
[./vd_0O/segment_0O/Rep.DataFile]  [../vd_0O/segment_1/REP.DataFile)
(...vd_0/segment_0/EC.DataFile ] [ ...vd_O/segment_1/EC.DataFile ]

Figure 3: The overview of EBS2. LSBD: Log-Structured Block
Device. REP.DataFile: DataFile with three-way replication.
EC.DataFile: DataFile with EC(8,3) encoding.

Disk segmentation. Figure 4 illustrates how EBS2 parti-
tions the VD’s LBA into several 128 GiB segment groups
each of which further comprises multiple 32 GiB segments.
BlockServers in EBS2 operate at the granularity of segments.
Further, EBS2 organizes the segment group as a series of data
sectors and allocates them to the segments in a round-robin
fashion. Finally, EBS2 associates one segment with multiple
DataFiles (512 MiB by default) to support concurrent writes.
DataFile is essentially a Pangu file designed to persist a por-
tion of a segment’s data. These different levels of parallelism
help EBS2 alleviate the hotspot accessing in VDs.
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Figure 4: The Disk Segmentation Design of EBS2 (§2.2).

Log-structured Block Device. In EBS2, we developed a
LSBD Core to support the append-only semantics of the
underlying Pangu and thus split traffic into frontend (i.e.,
client I/Os) and backend (i.e., GC and compression). Figure
5 shows the frontend I/O flow including persisting users’
data as a series of 4 KiB blocks and 64B metadata pairs ((D),
responding to users (@), recording updates in the transaction
file (@), and updating the in-memory index map (@). The
index map is essentially a log-structured merge tree (LSM-
tree) to speed up the locating process by storing a mapping
from VD’s LBA to the corresponding DataFile ID, offset and
length. The TxnFile accelerates the index map rebuild upon
segment migrations. EBS can recover the in-memory index
map by reading the latest I/Os’ LBA-to-DataFile mappings
from the TxnFile, without the need of tail scanning the data
blocks in the DataFiles. Note that DataFile, TxnFile and the
SSTables in the LSM-tree are all Pangu files.

LSBD Core @ACK

Write Request

@ Update MemTable

«— Segment Address Space —»|

In-memory Index Map
Immutable

’ ‘ ‘ TxnFile S ——

(- JC- =)
Figure 5: The data organization and persistence format of LSBD.
TxnFile: TransactionFile.

4KiB ‘ 8KiB rite DataFile

4KiB

o
|Write TxnFilg

\Replicated DataFile\

64B Header +
4KiB Data

64B Header +
4KiB Data

64B Header +
4KiB Data

GC with EC/Compression. EBS2 runs GC at the granularity
of DataFile (see Figure 6). When stale data within DataFiles
reaches the threshold, EBS2 initiates performing GC by col-
lecting valid data from the dirtiest DataFiles under the same
segment and combining them as new DataFiles. EBS2 finishes
GC by updating the TxnFile and the in-memory index map.

During GC, we also convert the replicated “REP.DataFiles"
to space-efficient “EC.DataFiles” with (8,3) EC and LZ4
compression.

Given that compression can alter the size of data, we struc-
tured the EC.DataFile into three main components: a DataFile
Header, a series of CompressedBlocks, and an Offset Table.
The Compressed DataFile Header includes a magic num-
ber (marking the start of the DataFile), version and check-
sum. Each CompressedBlock contains CompressionHeader
(CmpHdr) and CompressionBody (CmpBdy). The CmpHdr
records the timestamp, the compression algorithm (LZ4 by
default), the size of CmpBdy, and the checksum. CmpBdy
contains the compressed data and metadata (i.e., 4 KiB + 64B
before compression). At the end of the Compressed DataFile,
we enclose the mapping between the original LBA in VD
and the location in the Compressed DataFile as OffsetTable.
When reading the compressed data, EBS2 first locates data by
querying OffsetTable, then reads and decompresses the data.

We leveraged the opportunity of GC to perform the transfor-
mation of erasure coding and compression. If needed, EBS2
can schedule special types of GC tasks that preferably select
“Rep.DataFiles” (replicated, non-compressed data) over ex-
isting “EC.DataFiles” (erasure-coded, compressed data), in
order to make up more storage space for incoming writes.

The garbage percentage thresholds used to trigger GC in
production vary, depending on the cluster storage usage and
the workload. We deployed a set of optimizations for im-
proving GC efficiency (e.g., placement based on inferring
the block invalidation time [39]). In production, for the most
stressed clusters, the write amplification due to GC (i.e., the
number of bytes written by BlockServer and GCWorker over
the number of bytes written by BlockServer) is less than 1.5.

———;> Front-end I/O flow
———;> Background GC flow

,,,,,,,,, » Control flow .

BlockClient

____________________ Mirror File Mirror FileMirror File Mirror File
\#0 #1 #2 #3

P o

| Compressed ‘
DataFile :

Erasure Coding!

ECFile | EC File
#0 #1

Pangu Distributed File System
..I../REPDataFile| ... ..J.../[EC.DataFile

Figure 6: The Garbage Collection in EBS2.

BlockManager with higher availability. The integration
of Pangu enhances the availability of EBS2’s control plane.
First, through the Pangu lock service, the BlockManager can
continue serving clients even in the face of two out of three
node failures. Second, EBS2 now stores the VDs’ metadata
in a persistent and replicated key-value store as Pangu files,
while EBS1 stores the VDs’ metadata in local disks where
data loss could lead to an extended repair time.

Network. EBS2 uses a similar network setup as EBS1 except
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for two fundamental differences. First, for the frontend net-
work, we replace the kernel TCP with our user-space TCP im-
plementation (called Luna [46]) over a 2 x 25 Gbps network.
Luna achieves high performance (up to 3.5 throughput im-
provement and 53% latency reduction) by leveraging a run-to-
completion thread model and a zero-copy memory model.
Second, for the backend network, we use a 2 x 25 Gbps
RDMA network to meet the demanding SLAs [29]. Note
that the two changes above only affect the data path. For the
control path, we still use the kernel TCP (e.g., RPCs between
BlockManagers and BlockServers).

Snapshet. The architectural changes in EBS2 also facilitate
creating snapshots for VDs. With the out-of-place update, cre-
ating a snapshot in EBS2 no longer blocks foreground traffic.
Instead, when receiving a snapshot request, BlockManager
simply records a timestamp and asks the snapshot workers in
BlockServers to upload the updates between the last snapshot
timestamp and the latest one. As a result, generating a snap-
shot for 20GB of new data only takes around 30 seconds in
EBS2, much less than the average 33 minutes in EBS1.

Other background I/0. Apart from GC, one important back-
ground task is data scrubbing, which performs periodical
scanning to detect anomalies such as disk corruption and
CPU silent data errors. To minimize the performance impacts,
we have separated the scrubbing traffic from the GC tasks,
capped the scrubbing traffic at 10 MiB/s (i.e., scanning all
DataFiles every 15 days), and leveraged the heartbeat mecha-
nism for monitoring the scrubbing progress.

Deployment. We released EBS2 in 2015 and subsequently
scaled to more than 500 clusters for 2 million VDs. EBS2
could provide a virtual disk with an average write latency of
100 us (12x reduction than EBS1), a maximum IOPS of 1 M
(50x increase), and a maximum throughput of 4,000 MiB/s
(13 x increase) for the guest OS. In the field, the compression
ratio of the LZ4 algorithm is between 43.3% ~ 54.7%, and
the average compression ratio is 50.1%. With Compress-EC
in GC, EBS2 can reduce space usage from 3 to 0.69 replicas.
Since un-GCed DataFiles are still stored with three-way repli-
cation, the average number of replicas in EBS2 is 1.29 in the
field on average. For better management, we also reduced the
cluster size from 700 servers in EBS1 to around 100 in EBS2.

Limitations. EBS2 successfully improves the space efficiency
but incurred heavy traffic amplification. Compared with EBS1,
EBS2 increases the overall traffic from 3 (i.e., from three-way
replication) to 4.69 (i.e., 3 from the frontend plus 1.69 from
the backend GC), yielding only 15.5% of the network band-
width for serving the VDs’ requests. To alleviate this issue,
one promising solution is to adopt online EC/Compression,
which means to directly store users’ data in erasure-coded
and compressed format.

The challenges are twofold. First, erasure coding requires
the raw data blocks to be at least 16 KiB to achieve high com-
pression and encoding efficiency. However, in the field, nearly

70% of write requests are smaller than 16 KiB. Moreover,
EBS aims to deliver 100 us write latency, and accumulating
enough data in such a short interval can be difficult. For exam-
ple, in order to perform compression and erasure coding for all
user writes (i.e., accumulating 16 KiB data blocks within each
100 us interval), a segment needs to have a write throughput
over 160 MiB/s—surpassing 90% of segments in production.
Simply padding zeroes can result in an even higher traffic/s-
pace amplification. Second, even with the latency-optimized
LZ4 algorithm, compressing a 16 KiB-sized data block still
requires 25 us for CPUs, and such overhead escalates signifi-
cantly for larger ones, rendering an unacceptable performance
penalty for our service.

2.3 EBS3: Foreground EC/Compression

Overview. EBS3 achieves online EC/Compression by uti-
lizing a Fusion Write Engine (FWE) to merge small writes
and adopt an FPGA to offload the compression computations.
Specifically, EBS3 first leverages FWE to accumulate writes
from different segments of different VDs (i.e., step (D in
Figure 7). FWE then combines these incoming writes as
DataBlocks and sends them to the FPGA-based accelerator
for data compression ((2)). EBS3 then calls Pangu to persist
the compressed DataBlocks as JournalFiles with EC(4,2),
namely Q). After persisting JournalFiles, EBS3 sends acks to
the VD indicating the I/O completion (step @). Then EBS3
copies the uncompressed data and preserves them within the
BlockServer’s memory by segment (i.e., SegmentCaches, step
). When the data in a SegmentCache reaches the threshold
(512 KiB by default), EBS3 compresses the data via the host
CPU, appends them to the DataFile with EC(8,3), and updates
the TxnFile and in-memory index map (step ©).

For read requests, EBS3 first queries the SegmentCaches
in the BlockServers as they have the latest data. If not found,
EBS3 would further read the in-memory index map (i.e., the
LSM-tree). Note that JournalFiles are EC-ed with compressed
data from various segments of different VDs. Directly fetch-
ing data from JournalFiles can result in severe read amplifi-
cation (i.e., decompressing with heavy scanning). Therefore,
JournalFile is write-only during runtime and only readable
during failover to recover yet-to-be-dumped data upon crash.

Fusion Write Engine. Usually, when receiving a batch of
small write requests, FWE waits until the total amount of
data reaches a threshold (16 KiB by default) and then forms
a DataBlock before sending it to the FPGA for compression.
We set the waiting timeout as 8us (i.e., the interval between
NIC pollings). Moreover, we discover that insisting on merg-
ing smaller writes (e.g., 4 KiB) can result in higher 99th tail
latency (i.e., 220%). Therefore, for clusters that have infre-
quent small writes (e.g., certain clusters, on average, with
only 3.72% of the workload are 4 KiB writes), we do not
aggregate 4 KiB writes but directly append them with the
traditional three-way replication.
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Figure 7: The architecture and I/O flow of EBS3.

FPGA-based compression offloading. We employ a cus-
tomized FPGA to accelerate (de)compression, which includes
a submission queue to buffer newly-formed DataBlocks and
a completion queue to poll the results of hardware compres-
sion. We implement a scheduler inside the FPGA to split
the DataBlocks as fixed-sized (e.g., 4 KiB) slices and employ
multiple execution units to perform (de)compression tasks on
these slices in parallel. To ensure data integrity, we place an
end-to-end CRC check within the driver. After FPGA returns
compressed data, EBS3 would immediately decompress the
data and verify data integrity via CRC checking. Note this is
a necessary overhead as, during failover, JournalFiles are the
only data source.

Figure 8 shows the latency and maximum throughput of
FPGA-offloading and CPU-only compression across different
data block sizes, based on Silesia Compression Corpus [27].
The latency distribution of FPGA-offloading ranges from
29~65 us. Notably, when the data block size is 16 KiB, the
latency of FPGA-offloading reduces by 78% compared to
CPU-only. Further, FPGA-offloading achieves a maximum
throughput of 7.3 GiB/s, whereas CPU-only compression is
only 3.5GiB/s. As data block size increases, the FPGA-
offloading solution leads to larger performance gains.
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Figure 8: The compression performance comparison of FPGA-

offloading and CPU-only with 8 cores compression based on Silesia
Compression Corpus.

Network. EBS3 adopts higher linkspeed (i.e., 2 x 100 Gbps)
network for both frontend and backend. In addition, we fur-
ther developed Solar [36], a UDP-based transmission protocol.
By leveraging the hardware offloading on our Data Process-
ing Units (DPUs), Solar can pack each storage data block as a
network packet, thereby achieving CPU/PCle bypassing, easy
receive-side buffer management and fast multi-path recovery.

Deployment. EBS3 has been deployed in over 100 storage
clusters, serving more than 500K virtual disks since released
in 2019. EBS3 offers comparable performance to EBS2. The
incorporation of foreground EC/Compression in EBS3 enables
all data to be stored immediately with high storage efficiency
except in a few corner cases. As a result, the space efficiency
(i.e., replica per data) in the field further drops from 1.29 in
EBS2 to 0.77 in EBS3. In addition, the FPGA-based compres-
sion offloading can achieve 7.3 GiB/s throughput per card
and the overhead ranges from from 29~65 us. The overall
traffic amplification drops from 4.69 in EBS2 to 1.59 in EBS3
(based on field statistics and numbers may slightly vary due
to compression ratio differences across workloads).
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Figure 9: Random Write/Read Latency of Each Generation EBS
under Multiple Threads and 4 KiB-sized I/O. Thread-to-core pinning
means that each thread occupies one CPU core exclusively.

2.4 Evaluation

To quantitatively demonstrate the improvement led by the
architectural evolutions, we extensively evaluate the perfor-
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mance of EBS1, EBS2 and EBS3 with microbenchmark (by
stressing the VDs using FIO [21]) and application-based mac-
robenchmark (via RocksDB 6.2 with YCSB [26] and MySQL
8.0 with Sysbench [33]).

We evaluate the throughput and IOPS of the candidates
by stressing random 4 KiB write and read. We also increase
the number of threads (i.e., FIO jobs) from 1 to 16. Figure 9
shows the overall results. We can see that the throughput
(i.e., bars) of EBS2 and EBS3 increases almost linearly before
hitting the peak with 8 threads. With 8 threads, EBS2 and
EBS3 can deliver 4,000 MiB/s throughput per VD (i.e., I M
IOPS), which is 13x and 50x higher than the throughput and
IOPS of EBS1. Figure 9 further depicts the latency variation
with scaling of FIO jobs. We observe that the latency of
EBS2 and EBS3 is similar and remains the same from 1 to 8
threads. Their latencies only experience a slight increase with
16 jobs due to delays caused by contention between threads
after hitting throughput bottlenecks.

We use RocksDB with the default configuration. For
MySQL, we use InnoDB and configure the user buffer size as
1 GiB, the page size as 16 KiB, the flushing method as direct
I/O, the ramp-up time as 180 seconds and the execution time
as 20 minutes. Figure 10 shows the results. Compared to
EBS1, we observe 550% and 573% gains in throughput for in-
sert and update—two write-dominated workloads—in YCSB,
respectively. For read-dominated workloads, the through-
put experiences an approximately 470% increase. Under
oltp_insert workload in Sysbench, the throughput of EBS2
and EBS3 increase by 389% compared to EBS1. For the rest,
the throughput increases by an average of 350%.

3 Elasticity: A Tale of Four Metrics

The capabilities (e.g., capacity and throughput) of a common
block device (e.g., HDD and SSD) are usually bounded by
the physical properties, such as encapsulation or interface.
Backed by the cloud, EBS can provide VDs with much higher
flexibility. In this section, we will share our experience of
obtaining high elasticity, including pushing the upper bounds
and achieving fine granularity.

3.1 Latency

The latency of a VD is determined by the architecture, namely
the path a request has traveled. For example, the latency of
an EBS2-backed VD is bounded by the latency of the two-
hop network (from BlockClient to BlockServer and then to
ChunkServer), the software stack processing (i.e., Block-
Client, BlockServer and Pangu) and the SSD I/O. Hence,
the elasticity of latency is inherently coarse-grained, namely
the different levels of time overhead under various architec-
tures (e.g., EBS2 and EBS3). Next, from the perspectives of
average and tail latency, we further analyze the status quo.

Average latency. In Figure 11a, we measure the 8 KiB ran-
dom read/write average latency breakdowns across different
generations of EBS in their corresponding top 10% busiest
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Figure 10: Throughput Comparison (Normalized with EBS1).

production clusters. We choose to not include EBS1 in the
comparison as it is no longer deployed and many of its hard-
ware (e.g., HDD and 10 Gbps network) are obsolete. From the
comparison, we first observe that the hardware processing—
including 1st/2nd hop network (marked as orange and pink)
and disk I/O (yellow)—accounts for the majority of the to-
tal latency in both EBS2 and EBS3. In addition, while EBS3
requires more time to process the data due to the frontend
EC/compression, the reduced data volume in return spends
less time traveling the network (i.e., lower 2nd hop latency
in EBS3), yielding similar overall latency between EBS2 and
EBS3. Third, the major difference between read and write
lies in the disk I/O latency. Note that EBS2 is backed by
TLC-based SSDs while EBS3 is backed by QLC-based SSDs.
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Figure 11: 8§ KiB-Sized Avg. and Tail Latency Breakdown of EBS.
Ist hop: network latency from compute to storage end. 2nd hop:
network latency from BlockServer to Pangu.

Clearly, the key to improving average latency is reduc-
ing the hardware processing overhead. Therefore, we built
EBSX, targeting latency-sensitive scenarios. EBSX installs the
persistent memory (PMem) inside the BlockServers and di-
rectly stores the data in PMem with three-way replication.
Compared to EBS2 and EBS3, EBSX skips the 2nd hop and
drastically speeds up the disk I/O with PMem. Figure 11a
shows that EBSX achieves 30 us-level latency on both read and
write. Note that, for space efficiency, data in PMem would be
eventually flushed to Pangu and read statistics in Figure 11a
is performance under cache hit (i.e., data in PMem).
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Tail Latency. A user request may not be always served in time
due to hardware failures [43,44], misconfigurations [29,36],
software bugs [23, 32] or simply resource contentions [20].
Figure 11b presents the breakdowns of 99.999th percentile
latency, a common threshold for defining the tail latency [28],
among EBS3 clusters. We have collected millions of slow
requests and calculated the average latency of each procedure.
We observe that the BlockServer processing, such as non-
IO RPC destruction in the IO thread, background periodic
scrubbing and index compaction, accounts for the majority
(75.4% for write and 64.6% for read) of the tail latency.

This observation may sound rather counter-intuitive as
the hardware-related issues are usually blamed as the cul-
prits [42,45]. However, in EBS2 and EBS3, we have already
incorporated a series of simple techniques to improve the qual-
ity of service of hardware processing. For example, network
multi-path transport allows user requests to automatically
shift traffic to other paths to avoid slow IO when suffering
network abnormalities [36]. As another example, we em-
ploy a backup read/write strategy to trigger a retry to another
location if the I/O takes longer than 99.9th percentile latency.

Our analysis indicates that the principal driver of the tail
latency is the contention between the IO and the background
tasks (e.g., segment status statistics and index compaction)
in the BlockServers. In EBS2 and EBS3, the 10 and the back-
ground tasks are executed on the same thread, leading to the
IO hang-ups when the background tasks are triggered. To
address this, we segregate the 10 flow from other tasks and
execute it on independent threads. With these enhancements,
the 99.999th percentile write latency of EBS3 has been re-
duced to 1 ms, and the read latency reduced to 2.5ms (i.e.,
OptWrite/Read in Figure 11b).

Summary. First, the elasticity of latency is coarse-grained—
defined by the architectures, along with the hardware used
(e.g., from EBS2 to EBSX). Second, optimizing hardware-
induced latency is often straightforward. One can shorten
the path (e.g., skip a network hop), use faster devices (e.g.,
PMem) or simply offset the risks with multi-path or retries.
Third, tail latency by software stack has not received enough
attention and may be regarded as noise. Our analysis suggests
that under the high-speed network and fast SSDs, software-
induced tail latency can be the dominant factor.

3.2 Throughput and IOPS

In the context of EBS, we often discuss the elasticity of
throughput and IOPS together because the two metrics are of-
ten constrained by the same set of mechanisms. EBS achieves
high elasticity in throughput/IOPS by optimizing two compo-
nents on the key data path, BlockClient and BlockServer.

BlockClient. Every 10 issued from the VD is first touched
by the BlockClient. Therefore, the throughput and IOPS are
bounded by the BlockClient’s processing and forwarding ca-
pability. In EBS1, the BlockClient is implemented as a kernel
module, and all IO requests are processed by the CPU. In
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Figure 12: The maximum throughput and IOPS changes of Block-
Client with different HT numbers.

EBS2, we move the IO processing to the user space by intro-
ducing a user-space TCP stack to handle the IO requests [46].
In EBS3, we further offload the IO processing to the hard-
ware where a general-purpose FPGA, completely bypassing
CPU, performs direct data move from VMs, data block CRC
calculation, and packet transmission [36].

In Figure 12, we measure the maximum throughput and
TIOPS of BlockClient under different optimizations. We ob-
serve that EBS2 with the 2 x 25 Gbps network, throughput
is constrained by network capabilities. For EBS3 with the
2x100G network, the bottleneck shifts to the PCle bandwidth.
Furthermore, as long as network bandwidth is available, IOPS
increases with the number of hyper-threads (HTs).

BlockServer. Unlike BlockClient, once the requests reach
the BlockServer, the throughput and IOPS are constrained by
the levels of parallelism. Obviously, the more a request can
be divided and served in parallel, the higher the throughput
and the IOPS. Since EBS2, we have introduced three levels
(i.e., SegmentGroup, Segment and Data Sector) of parallelism
to enhance virtual disk performance.

Recall that the Data Sector size (initially 2 MiB) is con-
figurable in the segmentation design. Reducing the Data
Sector size allows virtual disks to scale one SegmentGroup
across more BlockServers, thereby obtaining higher through-
put/IOPS. In the field, we further decrease Data Sector size to
128 KiB and EBS2 (and EBS3) are able to deliver 1,000 IOPS
for every GiB subscribed. Note that configuring an even
smaller Data Sector size may backfire as the write requests
can be too fragmented, thereby leading excessive number of
sub-1/Os even for small writes and placing prohibitively high
pressure on the first-hop network.

Base+Burst allocation. With high throughput/IOPS enabled
by BlockClient and BlockServer optimizations, efficiently
allocating throughput/IOPS to VDs is the next step. Unlike
the coarse-grained elasticity in latency, users can subscribe
throughput and IOPS of VD on demand without altering the
capacity, which is called auto performance level (AutoPL).
However, we discover that the throughput/IOPS in practice
is often over-provisioned by users to handle the sporadic
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workload bursts. For better resource efficiency, we have
proposed the Base+Burst strategy based on the following
techniques.

* Priority-based congestion control. We categorize 10s into
baselO and burstIO. BaselO is pre-defined during virtual
disk creation, while burstlO is allocated based on the avail-
able capability (i.e., not guaranteed). When a BlockServer
is unable to meet all IO demands, it prioritizes processing
the baselO to ensure consistent latency. Currently, the max-
imum baselO capacity of a VD is 50,000 IOPS, and the
maximum burstIO capacity is 1 million IOPS.

o Server-wise dynamic resource allocation. Burst workloads
can also place a heavy burden on BlockServer processing
ability. Therefore, since EBS2, we devise the dynamic re-
source allocation to allow BlockServer to preempt resources
(bandwidth, CPU cores and memory) from background
tasks (e.g., GCWorker) to handle workload spikes.

* Cluster-wise hot-spot mitigation. To ensure enough head-
room for burstIO, especially under concurrent bursts onto
the same BlockServer, we use cluster-wise load-balancing
to remove hot spots. Under such scenarios, BlockMan-
ager would aggressively check the traffic status and migrate
segments more frequently between BlockServers.

Summary. The first lesson here is that the upper bound of
a VD’s throughput/IOPS is determined by the client (i.e.,
processing/forwarding ability) as the backend can easily scale
with parallelism. In addition, the high throughput/IOPS is
often desired but not always needed. Therefore, using a
Base+Burst strategy to cope with workload spikes can be
more economically beneficial for both users and vendors.

3.3 Capacity

Achieving elasticity in capacity is a fundamental requirement
of a cloud block store service. In EBS, we have further in-
cluded the following features.

 Flexible space resizing. The segmentation design enables
EBS with seamless support for VD resizing (i.e., adding or
removing SegmentGroups). EBS currently supports virtual
disk sizes ranging from 1 GiB to 64 TiB.

* Fast VD cloning. One outstanding characteristic of server-
less applications is a large volume of resources (e.g., VDs)
needs to be allocated in a short time. To support this, EBS
uses the Hard Link of Pangu files, which allows the cloning
of multiple disks within a storage cluster via downloading
a single snapshot. As a result, EBS2 enables the creation of
up to 10,000 virtual disks (each 40 GiB) in 1 minute.

4 Availability: The Dark Side of Scaling

Auvailability has always been a priority of cloud services. In
EBS, we especially focus on the blast radius—defined as
the number of VDs experiencing unavailable services upon
failures. Here, we categorize the blast radius as follows.

¢ Global. In the face of such an event, the service availabil-
ity of an entire cluster is impacted. A simple example is
an abnormally operating BlockManager causing the entire
cluster to perform in an undesired fashion (e.g., a miscon-
figuration causing network congestion and subsequent retry
storms). Note that EBS service runs on a per-cluster basis
and we do not discuss datacenter-level failures here.
Regional. For a regional event, we define it as a failure
that incurs the component(s) to deny service for several
VDs. For example, when a BlockServer crashes, the hosted
VDs would experience an outage until the corresponding
segments are migrated or all incoming I/Os are forwarded.
Individual. When an individual event occurs, only one
VD is influenced. Representative examples include an un-
correctable error inside the disk (and subsequently a read
retry) and a software bug that leads to an unsuccessful and
redirected write.

A straightforward solution to minimize the blast radius is
setting smaller clusters. In EBS2 and EBS3, we have reduced
the cluster size from 700 nodes (in EBS1) to around 100.
The benefit is obvious since there are much fewer VDs influ-
enced by a global event now. However, this approach, while
straightforward and effective, would not alleviate regional
and individual failure events.

Meanwhile, the regional events are likely to be more severe
due to two trends. First, EBS2 introduces the segmentation
to split one VD into 32 GiB segments and hence a VD in
EBS2 (or EBS3) is supported by multiple BlockServers instead
of one in EBS1. Moreover, the average capacity of VDs
only slightly increases from EBS1 to EBS2 and EBS3 (e.g.,
197 GiB to 220 GiB). Therefore, we can conclude that in
EBS2 and EBS3, a BlockServer hosts much more VDs than
EBS1. Consequently, when a BlockServer crashes, more VDs
are going to be influenced.

Moreover, individual events can cascade into regional fail-
ures as the segments can be migrated since EBS2. For ex-
ample, an internal incident occurred as tens of BlockServers
in an EBS2 cluster kept crashing and rebooting, degrading
the total cluster capacity and the I/O quality of thousands of
VDs. In the beginning, a faulty segment crashes its Block-
Server because of a buggy code logic—an individual event.
Then, the control plane tries to migrate the segment to other
BlockServers. However, as the client keeps retrying the failed
requests, every BlockServer that loads the segment crashes
as well, turning the individual event into a regional failure.
This failure can easily grow to a cluster-wise outage in a short
period if not manually intervened. Note that the cascading
failures are not unique to EBS (e.g., cases in HBase [4-0]).

To adapt to the trends in regional and individual events, we
further come up with techniques in both the control and data
plane to improve the availability in EBS.
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4.1 Control Plane: Federated BlockManager

In each cluster, the control plane of EBS2 (referred to as
BlockManager in §2) initially consists of a group of three
nodes that leverages the distributed lock service provided by
Pangu for leader elections. The leader node in the group
serves all the control plane requests to the corresponding
cluster and persists any state changes related to VDs to a
single metadata table stored in Pangu.

This setup presents two challenges. First, the single leader
serves all the VDs in the cluster with one single server. As
the VD’s density grows, the chances and scale of its service
disruption get higher. Second, the single metadata table hosts
the metadata of VDs in the cluster. Once a part of the meta-
data table becomes corrupted, the BlockManager may not be
able to load the metadata in memory, and cannot serve the
VDs until the metadata table is repaired. In production, we
have seen an increasing VD-per-cluster density over the past
several years, urging us to solve both issues to provide high
availability. Specifically, since the initial attempt to deploy
a 100-node cluster in EBS2, the average number of VDs has
increased from 20,000 to 100,000 per cluster. Correspond-
ingly, the CPU and the memory consumption have increased
by 4.1x and 4.5 x, respectively.

Figure 13 illustrates the architecture of Federated
BlockManager—our solution to the availability issue in the
control plane. Each cluster now has multiple BlockManagers,
with a CentralManager dedicated to managing the Block-
Managers. Each BlockManager further manages hundreds of
VD-level partitions, each of which corresponds to a metadata
table that only stores the metadata of a small subset of VDs.
The mappings from VDs to partitions are static; given a VD,
we use hashing algorithms to compute its corresponding par-
tition. The Client is not aware of the partition concept. For a
given VD, it can query all the BlockManagers in the cluster to
find out the BlockManager in charge, then send all its control
plane requests to the BlockManager.

Note that instead of having three nodes (one leader and two
standby), we now have only one node in each BlockManager.
Upon the failure of a BlockManager, CentralManager redis-
tributes its partitions to other BlockManagers, which then
load the metadata tables of the partitions from Pangu into
memory, and start to serve the VDs. Since the number of VDs
in a partition is relatively small, the loading time is only sev-
eral hundred milliseconds, without the need to have standby
nodes continuously fetching the latest metadata updates for
a fast leader switch. To ensure the availability of partition
scheduling, the CentralManager consists of three nodes based
on the lock service of Pangu.

Having multiple BlockManagers effectively reduces the
blast radius of single leader service disruptions, since now
each BlockManager only processes the requests of the subset
of VDs in the partitions it manages. For the single table
issue, instead of creating more BlockManagers, we adopt the
partition design for two reasons. First, with partitions, we

can make the number of VDs in a single metadata table small.
For 100,000 VDs in a cluster, we need to have 1,000 tables
to make the blast radius of metadata table failures smaller
than 100, while it is not resource-efficient to create 1,000
BlockManagers in 100-node clusters. Second, the concept
of multiple BlockManagers is mainly for distributing the
workloads to multiple servers, so as to reduce the chances of
service disruptions due to CPU and memory resource limits.
Note that the CentralManager only manages BlockManager
registrations and partition scheduling, and thus is less relevant
to system availability.
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Figure 13: The architecture of Federated BlockManager.

Similar designs for blast radius reduction in the control
plane of distributed storage systems can be found in the in-
dustry. HDFS Federation [1] is similar to Federated Block-
Manager, while it does not consider the metadata table failure
mode. Each set of NameNode in HDFS Federation persists
the metadata to its local disk, and all the requests to a set of
NameNodes become unavailable when the data in the local
disk is corrupted. AWS Physalia [24] deploys small units
called cells, each of which consists of seven nodes deploying
Paxos algorithms and serves a group of VDs. Differently,
Federated BlockManager adopts a two-level VD management
scheme, with each level emphasizing the blast radius of a
single node and single table failures, respectively.

4.2 Data Plane: Logical Failure Domain

The data plane of EBS2 constitutes multiple BlockServers,
each of which hosts thousands of segments and handles I/O
requests of the segments. When a BlockServer crashes, the
control plane migrates the segments to other BlockServers
in the cluster, such that the I/O services can resume in other
BlockServers. However, this mechanism indicates that fail-
ures can be cascading among BlockServers. Specifically, if
the crash is caused by an error segment (e.g., recall the buggy
code case in our production earlier), after the migration, the
BlockServer shall resume the requests and crash again. Ironi-
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cally, optimizing segment scheduling for faster recovery in
this case can make more BlockServer crashes, even possibly
leading to cluster-wise outages.

We have got several observations based on our deployment
experiences. First, the failure typically originates from re-
quests of a single VD or segment, and thus we need to monitor
the status of segments instead of BlockServers. Second, the
root causes of the failures are mostly due to software errors
(e.g., bugs or misconfigurations) as hardware or mechanical
failures are unlikely to travel along with the migrated seg-
ments. Software-induced failures can be time-consuming to
pinpoint the culprit, let alone build automatic tools for recov-
ering. Instead, a more practical way is to proactively reduce
the impacts. Third, the cascading failures, if not intervened,
can propagate quickly to the whole cluster. As a distributed
service, it is acceptable to experience a few BlockServers
shutdowns but a not cluster-wise outage.

Based on these observations, we design the logical failure
domain. The core idea is to isolate any suspicious segments
by grouping them into a small set of BlockServers, to avoid
other BlockServers or even the entire cluster being impacted.
We first associate each segment with a unique token bucket
with a maximum capacity of three. Each migration to a new
BlockServer consumes one token, and the token is refilled
every 30 minutes. When the token bucket is empty, any
subsequent migrations of the segment can only be selected
among the three pre-designated BlockServers, referred to as
its logical failure domain. The token bucket design does not
limit the number of migrations but the range of migrations.
When the segment is successfully loaded in a BlockServer
and can readily serve I/O requests for several minutes, we lift
the failure domain constraints.

The segment-level failure domain can effectively isolate an
error segment. However, if there are multiple error segments
(e.g., from one VD) or even VDs, the segment-level failure
domain is not sufficient to prevent multiple cascading failures
from happening at the same time. Our solution is to merge
the failure domains into one. Specifically, when there exists
more than one segment forming a failure domain, we pick
the first failure domain as the global failure domain, so as
to ensure there are at most three BlockServers isolated for
the cascading failures, without degrading the cluster capacity.
Any subsequent segment with an empty token bucket will
share the same global failure domain. Recall that we associate
each segment with three tokens. As a result, the chances of
a normal segment accidentally sharing the same migration
path with an error segment is small (note that a cluster is
of 100-node size), which effectively reduces false negatives.
As such, we can efficiently identify any error segments with
small impacts on other VDs.

After deploying the logical failure domain, we have suc-
cessfully defended our system against several potential out-
ages due to migration-induced cascading failures. Evidence
shows that some open-source storage systems also suffer from

the same issue from time to time. For example, the HBase
community reports several bugs [4—6] that show similar symp-
toms and lead to system outages. However, their treatments
focus on solving the bugs and reducing the blast radius with
physical isolation (similar to our first attempts), while the
logical failure domain prevents the cascading failure from
causing a cluster-wise outage once and for all.

4.3 Lessons Learned

First, with denser SSDs (e.g., QLC NANDs) becoming read-
ily available and the boosting processing ability of CPU or
other customized hardware (e.g., DPU), one can expect that a
crashed node in a distributed storage system—not just EBS—
can impact increasingly more users. As a result, regional
failure events would be more frequent and/or severe. The
key benefit of Federated Managers in this case is that it en-
joys a smaller blast radius without losing the flexibility of a
large-scale cluster.

Second, owning a forwarding layer between the users and
the underlying service is popular among distributed services,
for example, distributed key-value store [2] and cloud storage
services [22,25]. However, this also means the request or
certain data structures can be redirected to other destinations
upon failures, leading an individual event (e.g., bug or miscon-
figuration) to become regional or even global. We do not aim
at proactively recovering or avoiding these failures because
such events, like bugs or human errors, can be unpredictable.
Instead, the logical failure domain works in a reactive fashion
by confining the suspects among a few controlled servers and
does not rely on manual intervention.

5 To Whom the EBS Offloads

Offloading the software stack to specialized hardware for
better performance or achieving certain features (e.g., bare-
metal servers) has been gaining momentum from both the
cloud [10,11] and hardware vendors [8,12,13]. Along the evo-
lution of EBS, we have also leveraged FPGA for both frontend
BlockClient (i.e., running the customized UDP-based proto-
col, Solar [36]) and backend BlockServer for accelerating
compression/EC in EBS3. In the following subsections, we
first demonstrate the motivations behind the two offloading.
More importantly, we discuss why the two eventually both
dropped FPGA-based solutions but went on different paths—
ASIC for BlockClient and ARM CPU for BlockServer.

5.1 Offloading BlockClient

Since EBS2, the frontend BlockClient has become a bottle-
neck as the backend BlockServers can utilize segmentation
for high throughput/IOPS. The BlockClient has been bounded
by CPU-heavy tasks, including calculating CRC, encryption
and performing per-1/O table lookups. Our stress test re-
veals it takes 4 CPU cores to saturate a 2 x 25 Gbps NIC in
BlockClient. The newly emerged high-speed network would
require a doubled or quadrupled number of cores. More im-
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portantly, Elastic Computing Service (ECS, our VM service)—
co-located with BlockClient—requires the servers to be bare-
metal-ready (i.e., all CPU cores would be allocated to users).
Therefore, offloading BlockClient processing to customized

hardware is not only recommended but a must.

We initially built an FPGA-based solution for BlockClient
and later decided to directly deploy this version in our produc-
tion systems. This is because, at the time, directly applying
the ASIC-based solution requires much longer development
cycles. On the other hand, utilizing the ASIC-based approach
is also not desirable due to higher power consumption and
increased system complexity.

However, after several years of running in production, we
discovered that FPGA is actually not the ideal candidate for
BlockClient offloading. The major drawback is the instability.
Specifically, 37% of data corruption incidents, as identified
by CRC mismatches, are directly caused by FPGA-induced
errors such as overheating, signal interference, and timing
issues. This is because FPGAs are sensitive to environmental
conditions and require precise timing, which can be disrupted
by various factors like temperature fluctuations and electrical
noise. Moreover, FPGA-related issues account for 22% of
BlockClient’s operational downtime. Typical reasons include
hardware malfunctions, software bugs in the FPGA logic,
and incompatibility with updated system components. Apart
from reliability concerns, the frequency of FPGA is rather
limited (e.g., around 200 MHz to 500 MHz), thereby limiting
its potential for adapting to high-speed networks.

Therefore, we later move on to adopt the ASIC-based so-
lution. The preliminary deployment of FPGA-based Block-
Client considerably saves our time and effort for transitioning
to ASIC (i.e., around 12 months between the release of FPGA
and ASIC solutions). Compared to FPGA, ASIC-based of-
floading incurs approximately 5% of the CapEx and around
1/3 of the power consumption. Also, ASICs are optimized
at the hardware level for specific tasks, allowing for more
efficient use of resources and higher clock cycles. Another
key enabler is that the main functionalities of BlockClient,
including data movement, data calculation (e.g., CRC and
encryption) and network packet processing, are usually stable.
Hence, we do not need to periodically redesign the chips.
After deployment, field statistics indicate that the failure rate
of ASICs is an order of magnitude lower than that of FPGAs.

5.2 Offloading BlockServer

The goal of offloading BlockServer is to reduce costs while
maintaining performance. EBS3 introduces data compression
in the foreground to reduce traffic and space amplification.
However, even with the latency-optimized LZ4 compression
algorithm, the compression latency for 16 KiB-sized data
blocks remains elevated at 25 us (25.6% of total write la-
tency) for software-based, and it escalates significantly with
larger data blocks. Moreover, to achieve 4,000 MiB/s through-
put, at least 8 CPU cores are required, leading to heightened

resource contention and diminished performance. There-
fore, offloading is necessary to avoid the penalty incurred
by software-based compression.

While FPGA-based offloading demonstrates superior per-
formance metrics (see Figure 8), the field deployment has
exposed its limitations in terms of sustainability and cost-
effectiveness. First, BlockServer faces similar instability
FPGA issues. Over the past year, out of every 10,000 de-
ployed production BlockServers, we have documented on
average around 150 instances of compression offload failures
by FPGA exceptions. Second, we are exploring optimizing
compression algorithms tailored to data blocks with varying
temperature profiles to minimize storage overhead. For exam-
ple, using the ZSTD algorithm for separated cold data blocks
can further achieve an average 17% space reduction. How-
ever, the resource constraints inherent to FPGAs preclude
the dynamic adaptation to various compression algorithms.
Finally, compared to the scale of BlockClients, the scale of
BlockServers is still not large enough to amortize the escalat-
ing costs associated with FPGA development.

In light of these considerations, we are reorienting the tar-
get of offloading towards server CPUs. This shift is motivated
by the advent of multi-core CPUs and specialized compu-
tational units integrated within them, which offer superior
cost-efficiency while maintaining comparable performance
metrics. Noteworthy examples include Kunpeng 920 ARM
CPU [41], and Yitian 710 ARM CPU [9], all of which are
equipped with dedicated units for compression acceleration.
The test results show that the average LZ4 compression la-
tency of Yitian 710 is marginally higher by 1.3 us in com-
parison to FPGA-based offload, while 16 ARM cores attain
equivalent compression throughput.

Unlike BlockClient, we chose not to use ASIC for Block-
Servers because of two reasons. First, with no bare-metal
requirements, there are no limitations on using CPU cores
in BlockServers. Moreover, the BlockServer functionalities
(a.k.a., operators) are in an ever-changing fashion. For ex-
ample, the introduction of new compression and garbage
collection algorithms. In this case, applying ASICs may re-
quire a complete overhaul from time to time, which can be
prohibitively expensive even for the cloud-level scale.

5.3 Field Experience & Lessons

First, FPGA is undoubtedly the first choice for many hardware
offloading scenarios due to its high flexibility and competitive
performance. We, too, adopted FPGA in both BlockClient
and BlockServer as proof-of-concept. However, the frequent
errors and high CapEx made us realize that FPGA might not
be an ideal acceleration option for large scale storage systems.

Second, ASIC and ARM are both suitable for the compute-
to-storage architecture but in a different way. Compute end
is cost-sensitive due to its massive scale and has stable oper-
ators, such as processing (e.g., encryption) and forwarding,
matching the characteristics of ASIC. Storage backend can
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have frequent upgrades (e.g., improving GC algorithms and
optimizing host FTL for ZNS SSDs) and prioritize low inter-
ference between tasks. Therefore, the many-core ARM CPU
becomes a proper choice.

6 What If?

Evolving EBS has been a long journey. Along the way, it is
not surprising we have conceived or even tried out promising
ideas that are only later to be proved as impractical. Here, we
summarize such discussions as a series of “What If?”.

Q1: What if the log-structured design was never adopted?
When developing EBS2, we initially tried to extend the
EBS1 with segmentation but later dropped the idea due to high
engineering effort. Note that this idea (i.e., in-place update
with segmentation), if developed, can meet our requirements,
including high performance and space efficiency, for EBS2.

However, this idea still falls short for EBS3. Foreground
EC/compression necessitates that a storage system aggregates
a sufficient amount of data before the persistence to achieve
efficient data reductions. For example, EC(8,3) needs 32 KiB
data for one stripe with 4 KiB stripe unit size, and 16 KiB
compression units yield higher compression ratios. In §2.2
we have shown the domination of small writes (less than
16 KiB) combined with the need for low write latency prevent
us from aggregating 16 KiB data for a single segment. The
log-structured design can easily tackle this problem by allow-
ing segments from different VDs to be merged together and
flushed to a journal log.

We believe that Ceph [3] faces a similar issue due to the
lack of a log-structured layer like BlockServer. To utilize
EC in Ceph Block Device and CephFS, with FileStore, users
need to set up a cache tier with write-back mode before an
erasure-coded pool. With BlueStore, Ceph performs partial
writes (i.e., read-modify-write) to an existing stripe without
aggregating data, yielding additional network overhead, while
EBS3 always writes full EC stripes to Pangu.

Q2: What if we built EBS with open-source software?

At first glance, one might assume that a cloud-level block
store could be constructed by using a series of open-source
softwares. For example, we can use HBase [2] (i.e., a log-
structured distributed key-value store) and HDFS [7] (i.e., a
distributed file system) to replace the block layer (i.e., Block-
Server and BlockManager) and the file layer (i.e., Pangu).

However, the two designs are markedly different. EBS is a
co-design of the block interface, the software, and the hard-
ware. In the block layer, indexing is specifically tailored for
the block service. For each segment, the key space is deter-
ministic. Specifically, each segment represents an address
space of a 32 GiB segment consisting of 4 KiB blocks, and
thus the key space only includes 8 million numbers. This
deterministic feature allows for efficient memory allocation
for the indexing structure. To achieve low I/O average and tail
latency, EBS deploys hardware offloading (i.e., offload com-

pression algorithms to FPGA and ARM CPU) and customized
network protocols [36], and decouples non-I/O activities from
the critical I/O path, e.g., using individual GCWorker to per-
form garbage collection and moving index compaction pro-
cedures to background threads. In the file layer, Pangu is a
high-performance storage system that builds dedicated user-
space file systems for high-speed storage devices (i.e., NVMe
SSDs), deploys high-speed networks (i.e., RDMA), and in-
corporates various hardware-offloading technologies [35].

Q3: What if Pangu and EBS were never separated?

The short answer is that such integration would have signif-
icantly hindered the development of EBS. Recall that in EBS1,
the BlockManagers and BlockServers are integrated with the
persistence layer (i.e., ChunkServers and ChunkManagers).
This organization becomes increasingly unacceptable with the
scaling of our engineering team. First, the interfaces (between
the block and chunk layers) grew exceedingly complex—at
one point there were nearly 10 sets of persistence APIs in
EBS1—in order to support various functionalities and perfor-
mance optimizations. Maintaining such a complex codebase
undoubtedly slows down the development schedule. As an
example, around that time, it could take up to 10 months for
EBS to release a major upgrade due to delays by software
bugs or incompatibility between components.

Decoupling the underlying persistence layer (i.e., Pangu)
from EBS and adopting a unified log-structured interface have
clearly facilitated the development and ease of communica-
tion. In addition, the independent block layer enables rapid
segment creation and migration across multiple storage nodes,
irrespective of data block locations. The separated architec-
ture also localizes the impact radius of single-point failure to
each respective layer. Moreover, this disaggregation also al-
lows us to integrate emerging technologies (e.g., FPGA-based
accelerator) and extend Pangu as a general-purpose DFS for
other services (e.g., object store [17] and file store [15]).

7 Related Work & Conclusion

Cloud block store is a popular service provided by most cloud
vendors [14, 18, 19,25, 30]. In addition, academia has made
great efforts in building and optimizing such a system, such
as Salus [40], Ursa [34], Blizzard [37], and LSVD [31]. This
paper differs from the above as it not only chronologically
revisits the evolutions behind our EBS designs, but also pro-
vides a comprehensive summary of lessons we have obtained
along the road, including on elasticity, availability, hardware
offloads and the failed/alternative attempts.
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